RealTime
Operating
Systems
Proficiency
Test

Embedded

\\\\\\\\\

TABLE OF CONTENT

About Us = e O1
Learning OQutcomes «rorrrmmrmmmsmmen s 02
Questions

Introduction to Real- o7
time Operating Systems
The Internals of Realtime 08
Operating Systems
Threads and Thread "
Control Blocks(TCB)
The Schedulerand -
Scheduling Algorithms
Inter-Thread

L 19
Communication
Developing Realtime)
Operating Systems
FreeRTOS ommmmrmmmmmsssssssssssoooses 33
CMSIS-RTOS APIs e 42
Answer Sheet 44

About Us

EmbeddedExpertlO stands as a premier source of tailored
embedded systems development courses, catering to
individuals and enterprises seeking to hone or acquire
embedded firmware programming expertise. Our extensive
course selections encompass beginner to advanced levels,
addressing diverse facets of embedded systems
development, such as WiFi, STM32 Bare-Metal, WiFi,
Ethernet, GSM and beyond.

Our core objective is to equip individuals and organizations
with the indispensable skills to thrive in the swiftly evolving
embedded systems sector. We achieve this by providing
immersive, hands-on education under the guidance of
seasoned industry specialists. Our ambition is to emerge as
the favored learning platform for embedded systems

development professionals across the globe.

34A Frithville Gardens,
London, W12 7JN
England, United Kingdom

e:support@embeddedexpert.io
https://embeddedexpert.io

O1

https://embeddedexpert.io/

Learning Outcomes

At EmbeddedExpertlO, our aim is to prepare our students
comprehensively for the challenges they'll face in the job
market. To ensure your success in securing Embedded
Software Engineer roles at leading companies we've
identified several key knowledge areas and skills that are

critical to demonstrate during the interview process.

Understanding of Embedded
Systems

Candidates should have a strong foundational understanding
of embedded systems. This includes knowledge about how
these systems are designed, how they interact with
hardware and software, and how they operate within
constraints such as limited power or memory. They should
be well-versed in concepts such as real-time operating
systems, microcontroller architectures, memory

management, and system optimization.

Embedded

Expert IO 02

Proficiency in Relevant
Programming Languages

Proficiency in languages commonly used in embedded
systems, particularly C and C++, is essential. Candidates
should be able to write efficient, readable, and maintainable
code. Understanding of Assembly language could also be

advantageous for certain roles.

Familiarity with Relevant Tools
and Protocols

This is a critical skill for any engineering role. Candidates
should be adept at identifying problems, analyzing potential
solutions, and implementing these solutions effectively. They
should be able to demonstrate this ability in both theoretical

and practical terms.

Embedded

03 Expert |0

Knowledge of Testing and
Debugging

Understanding how to test and debug embedded software is
crucial. Candidates should be comfortable with techniques
for unit testing, integration testing, and system testing. They
should also know how to use debugging tools effectively and
understand common debugging techniques.

Programming Proficiency

Candidates must be able to understand and develop low level

code for common architectures such as ARM.

By mastering these areas, students will be well-prepared to
showcase their technical prowess, their problem-solving
abilities, and their readiness to contribute effectively in a
Embedded Software Engineer role. Our curriculum at
EmbeddedExpertlO is meticulously designed to help students
develop these competencies, giving them the confidence to
excel in their interviews and their subsequent professional

roles.

Embedded

Expert 10 04

Problem-Solving Skills

This is a critical skill for any engineering role. Candidates
should be adept at identifying problems, analyzing potential
solutions, and implementing these solutions effectively. They
should be able to demonstrate this ability in both theoretical
and practical terms.

\
p e ‘_ /_\ C J L ’\
_— —) s 2
~~ N ((€)
— S N E/ i ! A ,__) N e
— 7 /) « ',
/ °
N—"\ A ®
I! NN o ‘
== ‘/— i ~ ‘\‘ ‘
B EE =, (= N~ Y
— N
—~_/ Vi
N ’\ ‘ —N\
/ 7 . o ‘ A
e Lf__\ .) - ‘,,//*\ r_“"‘
J W,
5 Ras /’_‘J = ‘J K\I) -
R R e lt _/\\ 1 — \
— \) Va S

Embedded

05 Expert |0

Practise Test &

Interview Preparations

06

Introduction to Real-time Operating Systems

Question 1

What is the key difference between a real-time operating

system (RTOS) and a general-purpose operating system
(GPOS)?

A) A RTOS has more complex tasks

B) A RTOS guarantees that it will meet a deadline
C)

D)

A RTOS uses memory

A RTOS requires multiple processors

Question 2

What are the two most common performance metrics for
real-time operating systems?

A) Deadlines and reliability
B) Speed and capacity

C)

D)

Efficiency and effectiveness

Complexity and simplicity

Question 3

Question: Which performance metric measures whether an

RTOS is running in a predictable way with a guaranteed
response?

A. Deadlines
B. Reliability
C. Efficiency
D. Scalability

Embedded
Q7 Expert 10

The Internals of Realtime Operating Systems

Question 4

What are the two main stack operations?

A. Pop and Peek.
B. Push and Pop.
C. Peek and Purge.
D. Purge and Push.

Question 5

When data is read from the stack, which element is read
first?

A. The first element to be pushed onto the stack.

B. The last element to be pushed onto the stack.

C. The element in the middle of the stack.

D. The element at the bottom of the stack.

Question 6

What does the term "context saving" mean in relation to
ARM Cortex architecture and exceptions?

A. Saving all the active files on your desktop before an
exception occurs.

B. Saving the current state of the system to a physical
storage device for later recovery.

Embedded

xpert |0 08

C. Storing the contents of specific registers into the stack
when an exception occurs, allowing the program to continue
from where it left off before the exception.

D. Sending a snapshot of the current system state to a

remote server for data analysis.

Question 7

How is the stack pointer register used in the context of
exceptions in ARM Cortex architecture?

A. It points to the bottom of the stack in RAM.

B. It points to the top of the stack in RAM, used to locate the
top of the stack.

C. It saves the current state of all the registers when an
exception occurs.

D. It points to the exception handler function in the system

memory.

Question 8

How does manipulating the contents of the Program Counter
(PC) register during an exception affect the flow of the
program?

A. It has no effect on the flow of the program.

Embedde

xpert |0

09

B. It can cause the program to jump to a new location after
the exception is handled rather than continuing where it left
off.

C. It pauses the execution of the program until the
exception is handled.

D. It resets the PC to the beginning of the program, causing
the program to start over.

Question 9

What is the role of the stack pointer?

A. It always points to the bottom of the stack.
B. It always points to the middle of the stack.
C. It always points to the top of the stack.

D. It moves randomly within the stack.

Question 10

In a Cortex M processor, why does the stack pointer
decrement by four after a push operation?

A. Because it operates on 32-bit data and 4 bytes equals 32
bits.

B. Because it operates on 16-bit data.

C. Because it operates on 64-bit data.

D. Because it operates on 8-bit data.

Embedded

Xpert 10

Question 11

In the context of a Cortex M processor, what is the SP?

A. Stack Popper.
B. Stack Pointer.
C. Stack Processor.
D. Stack Pusher.

Question 12

What does the term 'Last-In-First-Out' mean in the context
of stack data storage?

A. The first element to be pushed onto the stack is the first
to be read.

B. The last element to be pushed onto the stack is the first
to be read.

C. All elements are read simultaneously.

D. The middle element to be pushed onto the stack is the
first to be read.

Question 13

Which register is known as the stack pointer in a Cortex M
processor?

A. Register 4
B. Regdister 5
C. Register 13
D. Register 6

Embedde
11 E X [

oert |0

Question 14

How many stack pointers does a Cortex-M microcontroller
have?

A. One
B. Two
C. Three
D. Four

Question 15

What does CPU utilization measure?

A. The percentage of available CPU cycles actually being
used

B. The number of tasks completed per unit time

C. The time it takes for each task to complete

D. The percentage of time the CPU spends in the idle state

Question 16

What does "blocking code" refer to?

a. Code that prevents the program from running.

b. Code that spends a lot of time in delay function, effectively
blocking the execution of other operations.

c. Code that contains errors and causes the program to
crash.

d. Code that restricts certain functions from being executed.

Embedded

Xpert 12

Question 17

In an autonomous vehicle, why could a busy wait solution be
problematic?

a) It could lead to outdated information and potentially
accidents

b) It would make the vehicle too slow
c) It would use too much battery power

d) It could overload the sensors

Threads and Thread Control Blocks (TCB)

Question 18

What does TCB stand for in the context of thread
management?

A. Thread Control Block
B. Time Cycle Buffer

C. Thread Context Backup
D. Task Control Buffer

Question 19

What are the two compulsory parameters in a thread control
block?

A. Stack pointer and thread ID

B. Thread status and priority

C. Stack pointer and next thread pointer
D. Thread period and burst time

Embedded

13 Expert IO

Question 20

What type of data structure is typically used to link thread
control blocks?

A. Array

B. Linked list
C. Queue

D. Stack

Question 21

What is the purpose of the next pointer (nextPt) parameter
in a thread control block?

A. To store the thread status

B. To hold the thread ID

C. To link to the next thread control block
D. To indicate the thread's burst time

Question 22

Which type of threads execute frequently but their runtime
cannot be anticipated?

A. Sporadic threads
B. Periodic threads
C. Aperiodic threads
D. Main threads

Embedded

/\ (J F I T 14

Question 23

What is the role of the thread control block (TCB) in thread
management?

A. To store the thread's program code

B. To allocate memory for the thread's stack

C. To hold the thread's execution context and information
D. To determine the thread's priority in the scheduling
algorithm

The Scheduler and Scheduling Algorithms

Question 24

What is the main difference between processes and
threads?

A. Processes are part of a thread, but threads are not part of
a process

B. Threads are part of a process, but processes are not part
of a thread

C. Processes execute tasks, while threads execute programs
D. Threads are lightweight processes, while processes are
heavyweight threads

Question 25

What is the purpose of the thread scheduler in a real-time
system?

Embedded

15 Expert 10

A) To allocate resources to different tasks

B) To execute each task as a main task in a somewhat parallel
mode

C) To check the status of each task

D) To organize the sequence of tasks

Question 26

How are scheduling algorithms classified?

A. Static vs. dynamic and preemptive vs. non-preemptive

B. Time-triggered vs. event-triggered and periodic vs.
aperiodic

C. Shortest job first vs. round-robin and rate monotonic vs.
weighted round-robin

D. First come first served vs. round-robin and shortest job

first vs. rate monotonic

Question 27

What is the characteristic of the round-robin (RR)
scheduler?
A. It is a non-preemptive scheduler with priority-based

execution

B. It executes tasks based on their burst time

C. It allows threads to complete execution before switching
to the next thread

D. It uses a time quantum for each thread's execution

Embedded

;,_/\‘ULIT 16

Question 28
What is the purpose of the thread scheduler?

A. To handle the removal of running threads from the CPU
B. To select another thread based on a particular algorithm
C. To run a number of threads ready to be executed

D. All of the above

Question 29

What is the purpose of the time quanta in round-robin
scheduling?

A. To determine the order of thread execution
B. To assign weights to threads

C. To get the time of the system

D. To limit the execution time of each thread

Question 30

Which scheduling algorithm does the round-robin scheduler
resemble when the quanta size is extremely large?

A. First-Come First-Served (FCFS) scheduler
B. Shortest Job Next (SJN) scheduler

C. Priority-based scheduler

D. Weighted Round Robin (WRR) scheduler

oert |0

Embedde
1/ E X |

Question 31

What is the recommended rule of thumb when choosing a
time quanta for round-robin scheduling?

A. Choose a time quanta equal to the context switch time

B. Choose a time quanta significantly larger than the context
switch time

C. Choose a time quanta slightly smaller than the context

switch time

D. Choose a time quanta equal to the number of threads

Question 32

In the weighted round-robin scheduler, how can the
importance of a thread be represented?

A. By assigning a weight parameter to each thread
B. By varying the burst time of each thread
C. By adjusting the time quanta for each thread

D. By arranging the threads in a circular linked list

Question 33

What is the purpose of the context switching process in the
round-robin scheduler?

A. To assign weights to threads based on their importance
B. To determine the order of thread execution
C. To save and restore the execution state of threads

D. To allocate a time quanta for each thread

Embedded
Expert 10

18

Question 34

How does the round-robin scheduler ensure fairness among
threads?

A. It assigns a higher priority to longer-running threads

B. It assigns a fixed time quanta to each thread

C. It dynamically adjusts the time quanta based on thread
performance

D. It prioritizes threads based on their initialization order

Inter-Thread Communication

Question 35

Which mechanism is used for safe communication and
synchronization between tasks/interrupts without carrying
additional data?

A) Semaphore

B) Mutex

C) Counting Semaphore
D) Queue

Question 36

What is the typical design pattern for using a binary
semaphore in an RTOS?

A) "Take" the semaphore before the critical section and "give"
it right after

Embedde

19 | O

Xpert

B) "Take" the semaphore in the same task as the critical
section
C) Increment the semaphore counter before using the shared

resource

D) Use a switch statement to handle different message codes
in the receiver task

Question 37

What is the purpose of a counting semaphore in an RTOS?

A
B
C
D

To trigger activation of a task

SN

To protect a critical section between tasks

To keep track of limited shared resources

~—r

To pass arbitrary messages to tasks

Question 38

What is the purpose of a semaphore?

A
B
C
D

To manage shared resources

N—

To synchronize tasks
To signal another task
All of the above

~—

Embedded

Xxpert | 20

Developing Realtime Operating Systems

#include "timebase.h"
#include "stm32f4xx.h"

#define ONE_SEC_LOAD 16000000

#define CTRL_ENABLE (1U<<0)
#define CTRL_TICKINT (1U<<1)
#define CTRL_CLCKSRC (1U<<2)
#define CTRL_COUNTFLAG (1U<<16)

#define MAX_DELAY OxFFFFFFFFU

volatile uint32_t g_curr_tick;
volatile uint32_t g_curr_tick_p;

volatile uint32_t tick_freq =

/‘a*:‘mf::-‘r.,,f 1n secondsxk/
19 void delay(u1nt32 t delay)
20 v {
21 uint32_t tickstart = get_tick();
uint32_t wait = delay;

if(wait < MAX_DELAY)
{
wait += (uint32_t) (tick_freq);

while((get_tick() - tickstart) < wait){}

32 void tick_increment(void)
33 o {
’ g_curr_tick += tick_freq;

Embedded

Expert IO

uint32_t get_tick(void)

{
__disable_irq();
g_curr_tick_p = g_curr_tick;
__enable_irq();

return g_curr_tick_p;

void timebase_init(void)

{ R
SygTick—>LOAD ONE_SEC_LOAD - 1;
éysTiék—>VAL » 9;
SysTiék—>C+RL = CTRL_CLCKSRC;
Syéfiﬁk;>CTRLl‘[= CTRL_TICKINT;
éysTiék—>CT§L:vi; CTRL_ENABLE;
__ehable_iqu)}

void SysTick_Handler(void)
{

tick_increment();

Expert 10

Embgdded

Question 39

What is the purpose of the time base initialization function?

A. To initialize the systick timer to operate in interrupt mode
and create a timeout each second.

B. To load values into the systick reload value register.

C. To clear the systick current value register.

D. All of the above.

Question 40

Which timer is used to create a time base because of its
consistency across all Arm Cortex microcontrollers?

A. TimerQO
B. Systick Timer
C. Timer1

D. Real-Time Clock Timer

Question 41

If you want to create a timeout to occur in a millisecond,
how many cycles should you load into the systick reload
value register given a default system frequency of 16Mhz?

A. 16 million

B. 16
C. 16,000
D. 1 million
Embedde
23 Expert |10

Question 42
What is the function of the "get_tick" function?

A. It disables global interrupts and gets the tick count.

B. It enables global interrupts and gets the tick count.

C. It disables global interrupts, gets the tick count, and then
enables global interrupts.

D. It simply returns the tick count.

Question 43

How often is the Tick_increment function called?

A. Every microsecond
B. Every millisecond
C. Every second

D. Whenever the get_tick function is called

Question 44

What is the purpose of the delay function in the given code?
A. It waits for a specific number of ticks to occur.

B. It increments the tick count.

C. It initializes the systick timer.

D. It retrieves the current tick count.

Embedded

;,_/\‘ULIT 24

Question 45

What is the purpose of the SysTick_Handler function in this
code?

A. It is automatically called when a systick interrupt occurs
and increments the tick count.

B. It is used to manually trigger a systick interrupt.

C. It initializes the systick timer.

D. It is called to get the current tick count.

Question 46

Why is the tick_freq variable declared as volatile?

A. To ensure the compiler does not optimize it out.

B. To allow it to be modified by multiple threads.

C. To signal that it may be externally modified outside
normal program flow.

D. All of the above.

Question 47
Why is the systick priority set to a low value in a RTOS?

A. To enable important hardware interrupts to execute

B. To ensure the scheduler has the highest priority

C. To synchronize the systick interrupt with the system clock
D. To prevent other interrupts from occurring

Embedded

25 X J e r T

Question 48
What is the purpose of the __asm("CPSIE I") instruction ?

A. Loading the address of the current Pt into R1

B. Disabling global interrupts

C. Enabling global interrupts

D. Saving the context of the currently running thread

Question 49
What does the T bit in the PSR register represent?

A. Thread status flag
B. Time quanta value
C. Task priority level
D. Thumb instruction set flag

#define NUM_OF_THREADS 3
#define STACKSIZE 400

#define BUS_FREQ 16000000

#define CTRL_ENABLE (1U<<0)
#define CTRL_TICKINT (1U<<1)
#define CTRL_CLCKSRC (1U<<2)
#define CTRL_COUNTFLAG (1U<<16)
#define SYSTICK_RST 0

Embedded

Expert 10

26

void osSchedulerLaunch(void);

uint32_t MILLIS_PRESCALER;
struct tcb {
int32_t xstackPt;
struct tcb xnextPt;

I
typedef struct tcb tcbType;

tcbType tcbs [NUM_OF_THREADS] ;
tcbType *currentPt;

int32_t TCB_STACK[NUM_OF_THREADS] [STACKSIZE];

v void osKernelStackInit(int i) {

tcbs[i] .stackPt = &TCB_STACK[i] [STACKSIZE - 16];
TCB_STACK[i] [STACKSIZE - 1] = (1U<<24);

TCB_STACK[i] [STACKSIZE-3] = OxAAAAAAAA;
TCB_STACK[i] [STACKSIZE-4] = OxAAAAAAAA;
TCB_STACK[1i] [STACKSIZE-5] = OxAAAAAAAA;
TCB_STACK STACKSIZE-6] = OxAAAAAAAA;
TCB_STACK STACKSIZE-7] = OxAAAAAAAA;
TCB_STACK]
TCB_STACK

[i
[i
[i
[i
[i]
[i] [STACKSIZE-8
[i]
TCB_STACKI[i
[i]
[i
[i
[i
[i
[i

|
[
|
[
|
| = OxAAAAAAAA;
[STACKSIZE-9] = OxAAAAAAAA;
[STACKSIZE-10] OxAAAAAAAA;
TCB_STACK |
TCB_STACK [
TCB_STACK |
TCB_STACK [
TCB_STACK |
|

TCB_STACK

STACKSIZE-11] OxAAAAAAAA;
STACKSIZE-12] = OxAAAAAAAA;
STACKSIZE-13] OxAAAAAAAA;
STACKSIZE-14] = OxAAAAAAAA;
STACKSIZE-15] OxAAAAAAAA;
STACKSIZE-16] = OxAAAAAAAA;

]
|
]
I
]
|
]
]
]
]
]

Embedded

Expert 10

uint8_t osKernelAddThreads(void (xtask@)(void), void (xtaskl)(void), void (xtask2)(void)) {
__disable_irq();
tcbs[0] .nextPt = &tcbs([1];
tcbs[1].nextPt = &tcbs[2];
tcbs[2].nextPt = &tcbs[0];
osKernelStackInit(9);
TCB_STACK[@] [STACKSIZE - 2] (int32_t) (task@);
osKernelStackInit(1);
TCB_STACK[1] [STACKSIZE - 2] (int32_t) (taskl);
osKernelStackInit(2);
TCB_STACK([2] [STACKSIZE - 2] (int32_t) (task2);
currentPt = &tcbs(0];
__enable_irq();
return 1;

}

void osKernelInit(void) {
MILLIS_PRESCALER = (BUS_FREQ / 1000);
}

void osKernellLaunch(uint32_t quanta) {
SysTick—=>CTRL = SYSTICK_RST;
SysTick->VAL = 0;
SysTick->LOAD = (quanta * MILLIS_PRESCALER) - 1;
NVIC_SetPriority(SysTick_IRQn, 15);
SysTick->CTRL = CTRL_CLCKSRC | CTRL_ENABLE;
SysTick=>CTRL |= CTRL_TICKINT;
osSchedulerLaunch();

v __attribute__((naked)) void SysTick_Handler(void)
__asm("CPSID I");
__asm("PUSH {R4-R11}");
__asm("LDR RO, =currentPt");
__asm("LDR R1, [RO1");
__asm("STR SP, [R1]");
__asm("LDR R1, [R1, #41");
__asm("STR R1, [R@]");
__asm("LDR SP, [R1]");
__asm("POP {R4-R11}");
__asm("CPSIE I");

__asm("BX LR");

Embedded
E crt |10

X P el

void osSchedulerLaunch(void) {
__asm("LDR R@, =currentPt");
R2, [RO]");
SP, [R2]");
{R4-R11}");
{R12}");
{RO-R3}");

SP, SP, #4");
{LR}");
SP, SP, #4");

Question 50
What is the significance of the TCB_STACK array in the code?

A) It stores the thread control blocks (TCBs) for each thread.
B) It keeps track of the current thread's stack pointer.

C) It holds the stack content for each thread.

D) It contains the addresses of thread functions.

Question 51

What does the __asm("POP {R4-R11}") instruction do in the
SysTick_Handler function?

Embedded

29 Expert |0

A) Saves the values of registers R4 to R11 onto the stack.
)

B) Loads the values of registers R4 to R11 from the stack.
C

D

) Enables the interrupt for registers R4 to R11.
) Restores the values of registers R4 to R11 from the stack.
Question 52

What is the significance of the CTRL_TICKINT constant in the
osKernelLaunch function?

A) It enables the SysTick timer.

B) It sets the clock source for the SysTick timer.
C)

D)

It configures the priority level of the SysTick interrupt.
It enables the interrupt for the SysTick timer.

Question 53

What is the purpose of the __disable_irg() and __enable_irq()
functions in the osKernelAddThreads function?

A) They disable and enable global interrupts, respectively.
B) They disable and enable the SysTick interrupt,
respectively.

C) They disable and enable the scheduler, respectively.

D) They disable and enable the thread context switching,
respectively.

Embedded

Xpert 30

Question 54

In the osSchedulerLaunch function, what is the purpose of
the instruction __asm("POP {R12}");?

A) It restores the value of register R12 from the stack.
B) It saves the value of register R12 onto the stack.

C) It skips the loading of register R12.

D) It adds 4 to the stack pointer.

Question 55

Which register(s) is/are saved onto the stack when the
SysTick_Handler function is executed?

A) RO, R1,R2, R3, R12, LR, PC, PSR

B) R4, R5, R6, R7, R8, R9, R10, R11

C) R4, R5, R6, R7, R8, R9, R10, R11, R12

D) RO, R1, R2, R3, R12, LR, PC, PSR, S0-S15

Question 56

In the osKernelStacklnit function, what is the purpose of
setting the T-bit (bit 24) in the PSR register?

A) It enables the Thumb mode for the processor.

B) It disables the Thumb mode for the processor.

C) It selects the interrupt mode for the processor.
)

D) It sets the priority level for the processor.

Embedded

31 X J e r T

Question 57

What is the significance of the value 15 used in the
NVIC_SetPriority(SysTick_IRQn, 15) statement?

A) It sets the SysTick interrupt priority to the highest level.
B) It sets the SysTick interrupt priority to the lowest level.
C) It disables the SysTick interrupt.
D) It enables the SysTick interrupt.

Question 58
What is the purpose of the following code snippet?

IvTrni+1al el FAar +hrasady /
/*1Nnl1tlal StacK Tor threaawvx/

osKernelStackInit(Q):

/%ITnitial PCx/

TCB_STACK[@] [STACKSIZE - 2] = (int32_t)(task0);

A) Initializes the stack for thread 0 with a specific function
B) Initializes the link register for thread O with a specific
function

C) Initializes the stack for thread O with a specific address

D) Initializes the program counter for thread O with a specific
address

Embedded

Expert |0 32

Question 59
What is the purpose of the following code snippet?

__asm("LDR SP, [R2]");

A) Loads the value of the stack pointer (SP) from the address
pointed to by R2

B) Loads the value of the stack pointer (SP) from the address
stored in R2

C) Loads the value of R2 from the stack pointer (SP)

D) Loads the value of R2 from the address pointed to by the
stack pointer (SP)

FreeRTOS

Question 60
Which of the following best describes FreeRTOS?

A) Real-time operating system for desktop computers
B)

C
D

Open-source operating system for smartphones
) Real-time operating system for embedded systems
)

Proprietary operating system for cloud servers

Embedded

33 Expert

Question 61

What is the purpose of a semaphore in FreeRTOS?

A
B
C
D

To allocate memory dynamically

To synchronize access to shared resources
To schedule tasks based on priorities

~—

To handle inter-process communication

Question 62

Which file contains the configuration settings for FreeRTOS?

A
B
C
D

FreeRTOSConfig.h
tasks.c

queue.c

~—

portmacro.h

Question 63
Which scheduling algorithm is supported by FreeRTOS?

A) First-Come-First-Served (FCFS)
B) Round Robin

C) Shortest Job Next (SJN)

D) Priority-based scheduling

Embedded

/\ (J F I T 34

Question 64

Which function is used to create a new task in FreeRTOS?
A) xTaskCreate()

B) xTaskMake()

C) xSemaphoreCreate()

D) vTaskStartScheduler()

Question 65

Which function is used to delay the execution of a task for a
specified amount of time in FreeRTOS?

A) xTaskCreate()
B) vTaskDelay()
C)

D)

xSemaphoreCreate()
vTaskStartScheduler()

Question 66
What is the function of the FreeRTOS idle task?

A
B
C
D

To execute high-priority tasks

SN—r

To handle system initialization

To handle memory allocation

~—r

To execute when no other tasks are ready to run

Embedde

Expert |10

35

const uintl6_t *blue_led = (uint16_t *)BLUE;
const uintl16_t *red_led = (uint16_t x)RED;

const uint16_t *orange_led = (uint16_t %)ORANGE;
const uint16_t *green_led = (uint16_t *)GREEN;

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);

void vLEDControllerTask(void xpvParameters);
typedef uint32_t TaskProfiler;
TaskProfiler blueTaskProfiler, redTaskProfiler, greenTaskProfiler, orangeTaskProfiler;

int __io_putchar(int ch)

{
HAL_UART _Transmit(&huart2, (uint8_t *)&ch, 1, OxFFFFFF);
return ch;

main(void)
HAL_Init();

SystemClock_Config();
MX_GPIO_Init();
MX_USART2_UART_Init();

xTaskCreate(vLEDControllerTask, "Blue LED Controller", 100, (void *)blue_led, 1, NULL);
xTaskCreate(vLEDControllerTask, "Red LED Controller", 100, (void *)red_led, 1, NULL);
xTaskCreate(vLEDControllerTask, "Green LED Controller", 100, (void *)green_led, 1, NULL);
xTaskCreate(vLEDControllerTask, "Orange LED Controller", 100, (void *)orange_led, 1, NULL);

vTaskStartScheduler();

while (1)

[
\

void vLEDControllerTask(void *pvParameters)
{
while (1)

HAL_GPIO_TogglePin(GPIOD, (uintl16_t)pvParameters);

for (volatile int i = 0; i < 100000; i++);

Embedded
E rt |10

Expert

Question 67

What does the xTaskCreate function do in the main function?

A) Create a new task to initialize the system clock

B) Create tasks to control different colored LEDs

C) Create a task to configure the UART communication
D) Create a task to toggle the GPIO pins

Question 68

How many LED controller tasks are created in the main
function?

Question 69

What is the significance of the 100 parameter passed to
xTaskCreate when creating the LED controller tasks?

A) It specifies the stack size for each task
B) It sets the priority level of each task
C)

D)

It defines the maximum execution time for each task

It determines the delay between task executions

3/

oert |0

Embedde

void SenderTask(void *pvParameters)

{

BaseType_t qState;

const TickType_t wait_time = pdMS_TO_TICKS(200);

xQueue = xQueueCreate(3, 2);

while (1)
gState = xQueueSend(xQueue, pvParameters, wait_time);
if (qState != pdPASS)

for (int i = 0; 1 < 100000; i++);

void ReceiverTask(void xpvParameters)
{

BaseType_t qState;

while (1)

{
qState = xQueueReceive(xQueue, &xReceiveStructe, 0);
if (qState == pdPASS)

if (xReceiveStructe.sDataSource == pressure_sensor)
{
printf("pressure sensor value = %d\r\n", xReceiveStructe.ucValue);
}
if (xReceiveStructe.sDataSource == humidity_sensor)

{

printf("humidity sensor value = %d\r\n", xReceiveStructe.ucValue);

Question 70

How many items can the queue hold in the code snippet?
A) 1

B) 2

C)3

D) Unlimited

Embedded

Expert 10 38

Question 71

What happens if the xQueueSend function returns pdPASS in
the SenderTask function?

A) The task exits the loop and ends

B) The task prints the sensor values

C) The task proceeds to the next iteration of the loop
D) The task blocks for 200ms

Question 72
What does the pdMS_TO_TICKS(200) function call represent?

A) Conversion of milliseconds to ticks
B) Conversion of ticks to milliseconds
C) Conversion of seconds to ticks
D)

Conversion of ticks to seconds

#define mainOnE_SHOT_TIMER (pdMS_TO_TICKS(4000UL))
#define mainAUTO_RELOAD_TIMER_PERIOD (pdMS_TO_TICKS(500UL))

TimerHandle_t xAutoReloadTimer, xOneShotTimer;
BaseType_t xTimerlStarted, xTimer2Started;

void prvOneShotTimerCallback(TimerHandle_t xTimer);
void prvAutoReloadTimerCallback(TimerHandle_t xTimer);

Embedded

39 Expert IO

int main(void)

{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
USART2_UART_TX_Init();
printf("system initializing

x0OneShotTimer = xTimerCreate("OneShot", mainOnE_SHOT_TIMER, pdFALSE, @, prvOneShotTimerCallback);

xAutoReloadTimer = xTimerCreate("AutoReload", mainAUTO_RELOAD_TIMER_PERIOD, pdTRUE, @, prvAutoReloadTimerCallback);
xTimerlStarted = xTimerStart(xOneShotTimer, 0);

xTimer2Started = xTimerStart(xAutoReloadTimer, 0);

vTaskStartScheduler();

while (1)

void prvOneShotTimerCallback(TimerHandle_t xTimer)
{

static TickType_t xTimeNow;

xTimeNow = xTaskGetTickCount();

printf(" One Shot ticks so far %ld\r\n", xTimeNow);
}

uint32_t counter;
void prvAutoReloadTimerCallback(TimerHandle_t xTimer)
{
static TickType_t xTimeNow;
xTimeNow = xTaskGetTickCount();
printf("Auto reload ticks so far %ld\r\n", xTimeNow);

if ((counter++) == 20)

{
printf("“timer stopped at %ld\r\n", xTimeNow);
xTimerStop(xAutoReloadTimer, 0);

Question 73
What is the value of the mainOnE_SHOT TIMER constant?

A) 42000 milliseconds
B) 500 milliseconds
C) 4000 microseconds

D) 500 microseconds

Embedded
" xpert |10 40

m

Question 74

Which timer is set to autoreload mode?

A
B
C
D

xOneShotTimer

xAutoReloadTimer

Both xOneShotTimer and xAutoReloadTimer
None of the timers

~— N =

Question 75

What is the significance of the pdTRUE parameter when
creating the xAutoReloadTimer?

A) It specifies that the timer should be started immediately.
B) It sets the timer to autoreload mode.

C)

D)

It configures the timer to use a high-precision mode.

It indicates that the timer should run on a different task.

Question 76

What is the purpose of the xTimeriStarted and
xTimer2Started variables?

A) They store the current tick count for the timers.

B) They keep track of whether the timers have been started
successfully.

C) They control the frequency of the timer callbacks.

D) They determine the duration of the timers.

Embedded

4 1 /v\ (J F f T

CMSIS-RTOS APIs

Question 77
What is the role of CMSIS-RTOS?

A) They provide direct access to hardware peripherals.

B) It serves as a wrapper around specific RTOS APIs.

C) They are responsible for task scheduling and
management.

D) They enable interaction with general-purpose operating
systems.

Question 78
What is the purpose of CMSIS-RTOS APIs?

A) To provide vendor-independent API standards

B) To define hardware peripherals in a microcontroller

C) To implement generic functions for RTOS programming
)

D) To create a portable operating system interface

Question 79

What is the benefit of using generic APIs in ARTOS

programming?

A)lt allows RTOS code to be written once and run using

different RTOS..

bedde

ert |0

Em
E X

|-

42

B)It provides unique functionality not found in specific RTOS
APIs.

C) It simplifies the process of accessing hardware
peripherals.

D) It ensures compatibility with general-purpose operating
systems.

Question 80

What is the purpose of the osThreadNew APl in CMSIS-
RTOS?

A) Creates a new mutex object
B) Starts a new timer
C

) Creates a new task
D) Allocates memory from a memory pool

Question 81

Which CMSIS-RTOS API is used to create an event flag
object?

A) osMutexNew

B) osThreadNew

C) osEventFlagsNew
D) osTimerNew

Embedded

43 X f) e r T

. s & B OB &8 A kA a8 A

Answer-Sheet

B
-
.

45

Question O1-B
Question 04-B
Question 07-B
Question 10-A
Question 13-C
Question 16-B
Question 19-C
Question 22-C
Question 25-B
Question 28-D
Question 31-B
Question 34-B
Question 37-C

Question 40-B

Question 02-A
Question 05-B
Question 08-B
Question 11-B

Question 14-B
Question 17-A

Question 20-B
Question 23-C
Question 26-A
Question 29-D
Question 32-A
Question 35-A
Question 38-D

Question 41-C

Question 03-B
Question 06-C
Question 09-C
Question 12-B
Question 15-A
Question 18-A
Question 21-C
Question 24-B
Question 27-D
Question 30-A
Question 33-C
Question 36-B
Question 39-A

Question 42-C

Embedded
Expert 10

-

Question 43-B
Question 46-D
Question 49-D
Question 52-D
Question 55-B
Question 58-D
Question 61-B
Question 64-A
Question 67-B
Question 70-C
Question 73-A
Question 76-B

Question 79-A

mbedde

\ — - - - m
xpert |0

Question 44-A
Question 47-A
Question 50-C
Question 53-A
Question 56-A
Question 59-A
Question 62-A
Question 65-B
Question 68-D
Question 71-C
Question 74-B
Question 77-B

Question 80-C

Question 45-A
Question 48-C
Question 51-D
Question 54-A
Question 57-B
Question 60-C
Question 63-D
Question 66-D
Question 69-A
Question 72-A
Question 75-B
Question 78-A

Question 81-C

46

