INTERRUPTS IN ARM PROCESSORS

study.embeddedexpert 10

A single microprocessor can serve several modules by:

* [Interrupt

When module needs service, it notifies the CPU by sending an interrupt
signal. When the CPU receives the signal the CPU interrupts whatever it Is
doing and services the module.

* Polling

The CPU continuously monitors the status of a given module,
when a particular status condition 1s met the CPU then services
the module.

study.embeddedexpert.io

int main() int main()

{

while(1){ { while(1){
} } if(switch = on){

getData(); }

OnSwitch_ISR{ y

getData() }
: }

Interrupt Polling

study.embeddedexpert.io

The function that gets executed when an interrupt
occurs Is called the Interrupt Service Routine(ISR) or
the Interrupt Handler

study.embeddedexpert.io

Nested Vector Interrupt Controller (NVIC)

A dedicated hardware inside the
Cortex-Microcontroller

[t is responsible for handling interrupts.

study.embeddedexpert.io

GPIO

GPIO

CSS

Peripherals

EXTI
Controller

NVIC
—_—
—_—
—_—
t
SysTick

Microcontroller

Processor
Core

Cortex —M Core

study.embeddedexpert.io

CSS

GrIo ~ EXTI
GPIO - Controller Cortex —M Core

Microcontroller

 [Interrupts from the processor core are known as
exceptions.

* [Interrupts from outside the processor core are
known as hardware exceptions or Interrupt Reguests.

-3 study.embeddedexpert.io

* The vector table contains the addresses of
the Interrupt Handlers and Exception Handlers.

cxcaphon number HQ numbar Vechor Offeat Excaption number RO fumber Dregst Vechar
1E=n fi Rin WL 10 B39
Oxdledn - T owo3rc e
I8 5 e . . Dne004C —
) — 048) - Ox0048 —
17 1 RO i 17 ’ - a0
=) — (w44 - . D004 4 A
Hwas) . o040 -
18 =1 SysTick, if mplemanted iE -1 b - Systick
14 : PondSY o3e . Ox003C :
ol = endaY O3B 14 2 PandSV
i W38) 00 58
- meseryed L Reserved
12 12 Beserved for Debug
1 =3 SWia - o
n -5 SVCa
" thaC i 0x002C -
10
5 -
)
" Reserved
7 Segerved i
) g -10 R Usage fault
e o018 -
- 5 -1 Bus fault
i) . Ore0014 —
fxl £ -12 010 lamary managemant faul
3 =13 HardFaul 001l
' ararad O 3 -13 Hard faull
2 =14 HL - DoeD00C
Ox0E < 14 Hu
Resel 00008
- (i 1 Réset
nitial SF value . Dne0004 —
Oxie nitial 5P value
]

study.embeddedexpert.io

GPIO pins are connected to EXTI lines
e It possible to enable interrupt for any GPIO pin
« Multiple pins share the same EXTI line

 Pin 0 of every Port is connected EXTIO IRQ
 Pin 1 of every Port is connected EXTI1 _IRQ
* Pin 2 of every Port is connected EXTI2_IRQ
 Pin 3 of every Port is connected EXTI3 _IRQ

This means we cannot have PB0 and PAO as input interrupt
pins at the same time since they are connected to the same
multiplexer 1.e. EXTIO

Same for PC4 and PB4 at the same time, etc.

Figure 30. External interrupt/event GPIO mapping

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register

PAD o— =N\
PBO —»
PCO O——»

PDO 00—

PED O——

EXTIO

pHo ——| /

EXTH[3:0] bits in the SYSCFG_EXTICR1 register

PAT O—» \
PB1 O—»
PC1 O—

PD1 O——»
PE1 O—»

PH‘ID—I-/

EXTH

EXTIM5[3:0] bits in the SYSCFG_EXTICR4 register

4

PA1S O—»
PB15 —
PCISO——»
PD1S O—»

PE15 00—

EXTI5

MS31425v1

study.embeddedexpert.io

PAOCF——>
PBO(F—»
PCOO——>
PDOCF—>

* Pins 10 to 15 share the same IRQ inside the = a—

PGOT——»

NVIC and therefore are serviced by the same ™=
Interrupt Service Routine (ISR)

EXTI0O —

PC10O——> EXTI1_IRQ
PD1IOO—»

» Application code must be able to find which ~ Free—— B ===
pin from 10 to 15 generated the interrupt. . preeeee

PA15 00—
PB15 00—
PC15 00—
PD150——
PE1ISO——»
PF150—»
PG15

EXTI5 —

study.embeddedexpert.io

 Disabled : This Is the default state

* Enabled : Interrupt is enabled

* Pending : Waiting to be serviced

* Active : Being serviced

study.embeddedexpert.io

1 2 3

Time in seconds

Legend

Active State

B Pending State
P Pending State Cleared

F

Interrupt fired

4

Lets assume
ADC Interrupt has a higher
priority than TIMER interrupt

ADC Interrupt fires at time t = 0.
This is indicated by F

Since there is no other interrupt, the
pending state is cleared and the interrupt
becomes active.

This is indicated by P

At time t=1 TIMER interrupt fires
This is indicated by F

Since it has a lower priority than the ADC
interrupt it remains in the pending state

At time t=3 ADC interrupt completes
its execution

Since there is no other interrupt with a higher
priority , the pending state of the TIMER
interrupt is cleared and the interrupt becomes
active.

This is indicated by P study.embeddedexpert.io

* Priorities allow us to set which interrupt should
execute first.

* They also allow us to set which interrupt can
Interrupt which.

study.embeddedexpert.io

Table 37. Vector table for STM32F411xC/E (continued)

c =
:‘% _:E ;ﬁ:::; Acronym Description Address
- - - Reserved (0000 0000
-3 fixed Reset Resst 0000 0004
2 fixed M Non maskable interrupt, Clock Security 00000 0008
System
-1 fixed HardFault All class of fault 0x0000 0OOC
o seftable MemMlanage Memary management 00000 0010
1 settable BusFault Pre-fetch fault, memory access fault 00000 0014
2 settable UsageFault Undefined instruction or illegal state 00000 0018
|- : —— o000 occe
3 settable SVCall System Service call via SWI instruction 0x0000 002G
4 seftable Debug Monitor Diebug Monitor 00000 0030
- - Reserved 0x0000 0034
5 seftable PendSW Pendable request for system service 00000 0038
a settable Systick System tick timer 0=0000 003C
o T settable WWDG Window Watchdog interrupt 00000 0040
1 | 8 | settable EXTI8 / FVD ExTI Linel;n'ii:z:‘;f;; mjﬂi‘p’:’”gh BXT | oenoo0 0044
EXTI Line 21 interrupt /
2 8 seftable | EXTI21 / TAMP_STAMP | Tamper and TimeStamp interrupts through | 0x=0000 0048
the EXTI line
EXTI Line 22 interrupt /
3 10 settable EXTIZ2 f RTC_WEUP RTC Wakeup interrupt through the EXTI =000 0040
line
4 11 settable FLASH Flash global intermupt CeDODD 0050
5 12 settable RCC RCC global interrupt 00000 0054
G 13 settable EXTIO EXTI Linel interrupt 00000 0058
7 14 settable EXTI EXTI Line1 interrupt 0x0000 005G
8 15 seftable EXTI2 EXTI Line2 interrupt 00000 0080
e 16 settable EXTI3 EXTI Line3d interrupt 00000 0084
10 17 seftable EXTI4 EXTI Line4 interrupt 00000 0068
1 18 seftable DMAT_Streami DMAT Streami global interrupt 0=0000 008C
12 12 settable DMAT_Stream DMA1 Stream1 global interrupt 00000 0070
13 20 seftable DMAT_Stream2 DMA1T Stream? global interrupt 00000 0074
14 21 settable DMA1_Stream3 DMA1 Stream3 global interrupt 00000 0078

* Part of the vector table for stm32f411

study.embeddedexpert.io

Some interrupt priorities are defined by ARM,
these cannot be changed. E.g.:

« RESET . Priority of -3
* NMI . Priority of -2
 HardFault : Priority of -1

Lower number = Higher priority

study.embeddedexpert.io

* Priority of each interrupt is defined using one of the
Interrupt Priority Registers (IPR)

Each Interrupt Request(IRQ) uses 8-bits inside a single IPR register

* Therefore one IPR register allows us to configure the
priorities of four different Interrupt Requests

« Example : IPRO holds the priorities of IRQO0,IRQ1,IRQ2 and IRQ3
* There are 60 Interrupt Priority Registers : IPRO — IPR59

 There are 60 x4 =240 Interrupt Requests (IRQ)

study.embeddedexpert.io

IPR59

« 8 —bits to configure the priority of an IRQ
implies there are 28 = 255 priority levels

IPRn

« STM32 microcontrollers use only the ;
4 upper bits to configure the priority of each IRQ,..,
this implies that in STM32 MCUSs there

are 24 = 16 priority levels

i

24

23

16

PRI_239

PRI_238

PRI_237

PRI_4n+3

PRI_4n+2

PRI_4n+1

PRI_4n

PRI_3

PRI_2

PRI_1

PRI_0

* IPRn =I1RQ(4n+3), IRQ(4n+2),IRQ(4n +1) and IRQ(4n)

Table 4-9 IPR bit assignments

study.embeddedexpert.io

* The 16 priority levels :

0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70,
0x80, 0x90, 0xAO0, 0xB0, 0xCO0, 0xDO0, OxEOQ, OxFO

* Highest Priority = 0x00=20

* Lowest Priority = OxFO =16

« To find the IPR number, we divide the IRQ number by 4,the remainder will determine
which byte it is in the IPR register.

« Because only the highest 4 bits are used for priority, the priority number needs to be
multiplied by 16 or left shift 4 bits

« To simply the calculation, the NVIC_IPRx are defined as an array of 8-bit registers IP[x]
In the core_cma3.h, core_cm4.h, core_cm7.h files.

Such that the priority of IRQX is controlled by IP[X]

E.g.
Setting TIM_Z2 interrupt priority to 3
TIM2 interrupt is IRQ 28

NVIC->IP[28] = 3 << 4; or NVIC SetPriority(TIM2 IRQn,3);

study.embeddedexpert.io

* The Interrupt Priority Registers (IPR) can also be divided into sub-priorities

* |n this configuration there are a series of bits defining preemption priority
and a series of bits defining the sub-priority

* The sub-priority will determine which IRQ will be executed first in the case of
multiple pending IRQs

study.embeddedexpert.io

Happy Coding

